Refinement

Rejintennenn	
Refinement on F^2	$(\Delta/\sigma)_{\rm max} = 0.001$
R(F) = 0.045	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.077$	$\Delta \rho_{\rm min} = -0.28 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.51	Extinction correction:
2666 reflections	Zachariasen (1967)
210 parameters	Extinction coefficient:
H atoms treated by a	7.3 (5) $\times 10^{-6}$
mixture of independent	Scattering factors from
and constrained refinement	International Tables for
$w = 1/[\sigma^2(F_o)]$	Crystallography (Vol. C)
$+ 0.00027 F_o ^2$]	

Table 3. Selected	geometric	parameters	(A, \circ)) for	(2)	1
Iddie St Serected	Aco		(,	//~·	· - /	

C11—C2	1.730(2)	C4—C5	1.444 (2)
C12—C5	1.726 (2)	C4—C6"	1.522 (2)
01—C1	1.222 (2)	C5—C6	1.355 (2)
O2—C3	1.295 (2)	O5—C8	1.420 (2)
O3—C4	1.216 (2)	O5—C9	1.424 (2)
04C6	1.299 (2)	N—C7	1.489 (2)
C1—C2	1.439 (2)	N—C10	1.492 (2)
C1—C3 ⁱ	1.527 (2)	C7—C8	1.507 (2)
C2—C3	1.357 (2)	C9—C10	1.504 (2)
O5—C8—C7	110.5(1)	N-C10-C9	109.3 (1)
O5-C9-C10	111.6(2)	C7-N-C10	111.1 (1)
N—C7—C8	109.2(1)	C8—O5—C9	110.1 (1)

Symmetry codes: (i) 2 - x, 2 - y, 2 - z; (ii) 1 - x, 1 - y, -z.

Table 4. Hydrogen-bonding geometry (Å, °) for (2)

D—H···A	D—H	HA	$D \cdot \cdot \cdot A$	$D = H \cdots A$
02—H1A···O4	0.90 (4)	1.72 (5)	2.512(2)	145 (4)
O2H1A···O3 ⁱ	0.90 (4)	2.45 (5)	3.067 (2)	126 (3)
O4H1 <i>B</i> ···O2	0.70 (5)	1.92 (5)	2.512(2)	142 (5)
O4H1 <i>B</i> ···O3 ⁱ	0.70 (5)	2.25 (5)	2.686 (2)	122 (4)
N—H2· · ·O4	0.91 (2)	1.99 (2)	2.851 (2)	157 (2)
N—H3···O1 ⁱⁱ	0.93 (2)	2.07 (2)	2.928 (2)	153 (2)
N—H3· · ·O2 ⁱⁱⁱ	0.93 (2)	2.27 (2)	2.963 (2)	131 (2)
Symmetry codes: (i	(1 - x, 1 - y)	$y_{1}, -z;$ (ii) $x_{1}, -z_{2}$	y - 1, z - 1	; (iii) $2 - x$,

1 - y, 1 - z.

H atoms were located on difference syntheses and all H atoms except H1A and H1B in (2) were refined isotropically. The coordinates of H1A and H1B were refined with an occupancy factor of 0.5; the values of U_{iso} were assumed to be equal to 1.5 times the average value of U_{eq} of O2 and O4 in (2).

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1990); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1997). Program(s) used to solve structures: PATTY in DIRDIF92 (Beurskens et al., 1992) for (1); SIR92 (Altomare et al., 1993) for (2). For both compounds, program(s) used to refine structures: TEXSAN; software used to prepare material for publication: TEXSAN.

This work was supported by a Grant-in-Aid for Scientific Research (B) No. 10440208 from the Ministry of Education, Science, Sports and Culture, Japan.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OB1016). Services for accessing these data are described at the back of the journal.

© 1999 International Union of Crystallography Printed in Great Britain – all rights reserved

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Crvst. 26, 343-350.
- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). *The DIRDIF Program System*. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Farrugia, L. J. (1997). ORTEP-3 for Windows. University of Glasgow, Scotland.
- Habeeb, M. M., Alwakil, H. A., El-Dissouky, A. & Fattab, H. A. (1995). Pol. J. Chem. 69, 1428-1436.
- Issa, Y. M., Darwish, N. A. & Hassib, H. B. (1991). Egypt. J. Chem. 34, 87-93.
- Molecular Structure Corporation (1990). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1997). TEXSAN for Windows (Version 1.03) and Single Crystal Structure Analysis Software (Version 1.04). MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1999). C55, 1926-1928

1-(2,4-Dinitrophenyl)-3-(2-hydroxyphenyl)-4-methyl-1*H*-pyrazole

J. Jeyakanthan, ^a D. Velmurugan, ^a S. Selvi^b and P. T. Perumal^b

^aDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ^bOrganic Division, Central Leather Research Institute, Chennai 600 020, India. E-mail: crystal@giasmd01.vsnl.net. in

(Received 6 May 1999; accepted 18 June 1999)

Abstract

The molecular structure of the title compound, 2-[1-(2,4-dinitrophenyl)-4-methyl-1*H*-pyrazol-3-yl]phenol, $C_{16}H_{12}N_4O_5$, containing a dinitrophenyl and a hydroxyphenyl ring substituted to the pyrazole moiety is one of the products obtained from the reaction of *o*-hydroxy propiophenone 2,4-dinitrophenylhydrazone. The phenyl and pyrazole rings are quite planar. The dihedral angles between the pyrazole and the two phenyl rings are 23.5 (1) and 15.3 (1)°. The interplanar angle between the phenyl ring is 32.6 (1)°. The crystal structure is stabilized by O—H···N-, and O—H···O-type intramolecular hydrogen bonds and the packing of the molecules are stacked by C—H···O-type intermolecular hydrogen bonds.

> Acta Crystallographica Section C ISSN 0108-2701 © 1999

Comment

Pyrazole derivatives are principally used in medicine; many alkyl pyrazoles have shown quite significant bacteriostatic, bacteriocidal and fungicidal, analgesic and antipyretic activity (Malhotra et al., 1997; Potts, 1986). Nitrogen heterocycles, such as pyrazoles, imidazoles and triazoles, either in isolation or in a fused system, are well documented for their antifertility activity (Omodei-Sale et al., 1976). Pyrazole derivatives have been found to have moderate antimalarial activity (Garg et al., 1973) and are also used as anti-inflammatory (Mani Naidu et al., 1996; Lesyk et al., 1998), antihyperglycaemic (Kees et al., 1996), multidrug resistance (MDR)-modulating (Chiba et al., 1998) and analgesic (Sobczak & Pawlaczyk, 1998) agents. Pyrazole compounds are widely used as an extraction reagent in the separation of trace metals (Akama et al., 1995). In view of wide biological applications of the pyrazole compounds, the crystal structure of 1-(2,4-dinitrophenyl)-3-(2-hydroxyphenyl)-4-methyl-1*H*-pyrazole, (I), has been determined.

The ORTEP (Zsolnai, 1997) diagram of the molecule with numbering scheme is shown in Fig. 1. The bond lengths in the five-membered ring (see Table 1) all agree well with several related pyrazole derivatives (Bonati & Bovio, 1990; Allen et al., 1987; Fronczek et al., 1989; Panneerselvam et al., 1996). The dihedral angles between phenyl rings A and C with the pyrazole ring B are 23.5 (1) and 15.3 (1)°, respectively, showing the conjugation between the phenyl rings and the pyrazole moiety. The Csp^2 —N bonds associated with the nitro groups are clearly single bonds, while the C1-N2 [1.402(2) Å] bond shows a partial doublebond character (Mani Naidu et al., 1996) which is also evidence for the conjugation. The pyrazole ring is quite planar [maximum deviation from the leastsquares plane is 0.001(2)Å for C3A]. The average C—C bond distance of ring A is 1.383(3) Å and ring C is 1.381(3) Å and the angles are normal (Allen et al., 1987). The C-O distance [1.366(3)Å] also agrees well with those found in related pyrazole derivatives (Malhotra et al., 1997; Allen et al., 1987). The phenyl rings are nearly planar and the maximum deviations from the plane are 0.023 (2) Å for ring A and 0.011 (1) Å for ring C. The interplanar angle between the phenyl rings (A and C) is $32.6(1)^{\circ}$.

Fig. 1. An ORTEP (Zsolnai, 1997) displacement ellipsoid plot of (1) at the 30% probability level.

The bond lengths and bond angles in the NO₂ groups (see Table 1) are comparable to those found in several related pyrazole derivatives (Fronczek *et al.*, 1989; Mani Naidu *et al.*, 1996; Aygün *et al.*, 1998). The nitro group in the *ortho* position is twisted 67.3 (2)° from the plane of the phenyl ring (A), whereas the *para* position of the nitro group is almost coplanar with the ring. This tilting of the nitro group avoids unfavourable steric contacts of O6 with N1. This phenomenon may be related to the electron-withdrawing character of the nitro group.

Apart from normal van der Waals interactions the molecular structure is stabilized by an $O-H \cdots N$ -type intramolecular hydrogen bond, while the molecular packing in the solid state is stabilized by four $C-H \cdots O$ intermolecular hydrogen bonds (Table 2).

Experimental

o-Hydroxypropiophenone 2,4-dinitrophenylhydrazone (1.68 g, 0.005 mol) was dissolved in N,N-dimethylformamide (5 ml) and kept in an ice-cold condition. To this, POCl₃ (1.4 ml) was added dropwise with stirring for 15 min. The reaction was stirred at room temperature for about 3–4 h then the contents poured into crushed ice (100 g). The yellow precipitate obtained was filtered, washed and dried. The product was purified by column chromatography using 60–120 mesh and 20% ethyl acetate–petroleum ether (yield 1.45 g) and recrystallized from ethyl acetate by slow evaporation.

Crystal data

$C_{16}H_{12}N_4O_5$	Cu $K\alpha$ radiation
$M_r = 340.30$	$\lambda = 1.54180 \text{ Å}$

Cell parameters from 25

reflections

 $\mu = 0.963 \text{ mm}^{-1}$

 $0.3 \times 0.1 \times 0.1$ mm

reflections with

0.00 1-3

T = 293 (2) K

 $\theta = 20 - 30^{\circ}$

Needle

Orange

Monoclinic
$P2_1/c$
a = 7.5598(1) Å
b = 15.5263 (2) Å
c = 13.0732(2) Å
$\beta = 98.1394 (10)^{\circ}$
$V = 1519.02 (4) \text{ Å}^3$
Z = 4
$D_x = 1.488 \text{ Mg m}^{-3}$
D_m not measured

Data collection

Enraf–Nonius CAD-4	1912 reflections with
diffractometer	$I > 2\sigma(I)$
$\omega/2\theta$ scans	$R_{\rm int} = 0.016$
Absorption correction:	$\theta_{\rm max} = 66.27^{\circ}$
ψ scan (North <i>et al.</i> ,	$h = 0 \rightarrow 8$
1968)	$k = 0 \rightarrow 18$
$T_{\rm min} = 0.761, T_{\rm max} = 0.910$	$l = -15 \rightarrow 15$
2868 measured reflections	2 standard reflections
2654 independent reflections	frequency: 60 min
	intensity decay: 1%

-2

Refinement

0

Refinement on F	$\Delta \rho_{\rm max} = 0.27 \ {\rm e \ A}^{-1}$
$R[F^2 > 2\sigma(F^2)] = 0.052$	$\Delta ho_{ m min}$ = -0.31 e Å ⁻³
$wR(F^2) = 0.240$	Extinction correction:
S = 1.094	SHELXL97 (Sheldrick,
2654 reflections	1997)
229 parameters	Extinction coefficient:
H-atom parameters	0.0018 (7)
constrained	Scattering factors from
$w = 1/[\sigma^2(F_o^2) + (0.18P)^2]$	International Tables for
where $P = (F_o^2 + 2F_c^2)/3$	Crystallography (Vol. C)
$(\Delta/\sigma)_{\rm max} = 0.001$	

Table 1. Selected geometric parameters (Å, °)

N1—C5A	1.327 (2)	N4—O5	1.216 (3)
N1N2	1.355 (2)	N4—O6	1.224 (3)
N2—C3A	1.363 (3)	N4C6	1.471 (3)
N2—C1	1.402 (2)	O2—C2′	1.366 (3)
N3—04	1.216(3)	C3A—C4A	1.355 (3)
N3O3	1.221 (2)	C4A—C5A	1.437 (3)
N3—C4	1.463 (3)		
C5A—N1—N2	105.77 (14)	C3-C4-N3	120.83 (18)
N1—N2—C3A	111.04 (15)	C5-C4-N3	117.89(19)
N1—N2—C1	120.45 (14)	C5-C6-N4	116.84 (17)
C3A—N2—C1	128.50 (15)	C1-C6-N4	121.01 (17)
O4—N3—O3	123.77 (19)	C4A—C3A—N2	108.23 (16)
04—N3—C4	118.69 (18)	C3A—C4A—C5A	104.34 (16)
O3—N3—C4	117.54 (19)	C3A—C4A—C6A	124.71 (18)
O5—N4—O6	126.9 (2)	C5A—C4A—C6A	130.96(17)
O5-N4-C6	116.5 (2)	N1—C5A—C4A	110.62 (15)
O6—N4—C6	116.5(2)	N1-C5A-C1'	119.26 (16)
C6-C1-N2	122.48 (16)	O2—C2′—C3′	117.1 (2)
C2-C1-N2	119.52 (16)	O2—C2′—C1′	122.89 (18)

Table 2. Hydrogen-bonding geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	$D = H \cdots A$
O2—H2· · · N1	0.82	1.94	2.646 (2)	144
C3A-H3···O4 ⁱ	0.93	2.51	3.439 (3)	175
C3-H3···O6 ⁱⁱ	0.93	2.68	3.356 (3)	131
C5'—H5'···O5 ⁱⁱⁱ	0.93	2.49	3.219 (3)	135
C4'H4'····O3 ^{iv}	0.93	2.64	3.314 (3)	130

Symmetry codes: (i) $-x, \frac{1}{2} + y, -\frac{1}{2} - z$; (ii) $x, \frac{3}{2} - y, z - \frac{1}{2}$; (iii) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (iv) 1 + x, y, 1 + z.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: SDP (Frenz, 1978). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ZORTEP (Zsolnai, 1997). Software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1983, 1995).

JJ thanks CSIR, India, for providing a Senior Research Fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: KA1331). Services for accessing these data are described at the back of the journal.

References

- Akama, Y., Shiro, M., Ueda, T. & Kajitani, M. (1995). Acta Cryst. C51, 1310-1314.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Aygün, M., Işik, Ş., Öcal, N., Tahir, N. M., Kaban, Ş. & Büyükgüngör, O. (1998). Acta Cryst. C54, 527-529.
- Bonati, F. & Bovio, B. (1990). J. Crystallogr. Spectrosc. Res. 20, 233-244.
- Chiba, P., Holzer, W., Landau, M., Bechmann, G., Lorenz, K., Plagens, B., Hitzler, M., Richter, E. & Ecker, G. (1998). J. Med. Chem. 41, 4001-4011.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP a Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld & G. C. Bassi, pp. 64-71. Delft University Press.
- Fronczek, F. R., Parodi, F. J., Fischer, N. H., Hsieh, T. C.-Y. & Chang, B.-Y. (1989). Acta Cryst. C45, 2027-2028.
- Garg, H. G., Singhal, A. & Mathur, J. M. L. (1973). J. Pharm. Sci. 62, 494-496.
- Kees, K. L., Fitzgerald, J. J. Jr, Steiner, K. E., Mattes, J. F., Mihan, B., Tosi, T., Mondoro, D. & McCaleb, M. L. (1996). J. Med. Chem. 39. 3920-3928.
- Lesyk, R., Vladzimirska, O., Zimenkovsky, B., Horishny, V., Nektegayev, I., Solyanyk, V. & Vovk, O. (1998). Bull. Chim. Farm. 137, 210-217.
- Malhotra, S., Parmar, V. S. & Errington, W. (1997). Acta Cryst. C53, 1885-1887.
- Mani Naidu, S., Krishnaiah, M., Sivakumar, K. & Sharma, R. P. (1996). Acta Cryst. C52, 1056-1058.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Omodei-Sale, A., Toia, E., Gallians, G. & Lerner, L. J. (1976). Chem. Abstr. 85, 192731.
- Panneerselvam, K., Jayanthi, N., Rudiño Pinera, E. & Soriano-Garciá, M. (1996). Acta Cryst. C52, 1257-1258.
- Potts, K. T. (1986). In Comprehensive Heterocyclic Chemistry, Vol. 5, part 4A. Oxford: Pergamon Press.
- Sheldrick, G. M. (1990). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Sobczak, H. & Pawlaczyk, J. (1998). Acta Pol. Pharm. 55, 279-283.
- Zsolnai, L. (1997). ZORTEP. An Interactive Graphics PC Program for Crystal Structure Illustrations. University of Heidelberg, Germany.